26 марта 2025 г. в формате онлайн состоялся Научный семинар ГЦ РАН. Младший научный сотрудник лаборатории геоинформатики и геомагнитных исследований Геофизического центра РАН Иван Александрович Лисенков представил доклад «Многопараметрический анализ пространственного распределения геолого-геофизических параметров методами машинного обучения и оптимизация фотоизображений».
В рамках доклада были рассмотрены методы многопараметрического анализа пространственного распределения геолого-геофизических данных с применением алгоритмов машинного обучения. Многопараметрический анализ – это метод исследования, основанный на одновременном учете и обработке множества параметров для выявления скрытых закономерностей, взаимосвязей и тенденций в данных, а также для оценки их прогностических свойств. В геолого-геофизических исследованиях многопараметрический анализ позволяет интегрировать различные типы данных, такие как сейсмические, гравиметрические, магнитные, геохимические и спутниковые измерения, для более точного моделирования и интерпретации природных процессов. Предложенный подход направлен на решение актуальных геофизических задач, таких как распознавание мест возможного возникновения сильных землетрясений, оценка наличия признаков геотермальных резервуаров и полезных ископаемых по косвенным геоданным, поиск пространственных корреляций в геофизических полях, геологических структурах и геотектонических процессах и др.
Для корректного функционирования моделей машинного обучения требуется достаточный объем размеченных количественных данных. В докладе рассматривались алгоритмы консолидации информации из различных источников и форматов (векторные, растровые, неструктурированные данные), обеспечивающие приведение данных к единому формату, формализацию геопространственных характеристик и их трансформацию в количественные векторы. Практическая апробация разработанных методов была проведена на примере формирования консолидированного набора данных для восточного сектора Российской Арктики. Итоговый массив данных опубликован в открытом доступе и может быть использован исследователями для дальнейшего анализа.
Рассматривался типовой процесс проведения многопараметрического анализа с применением моделей машинного обучения, таких как линейные и полиномиальные модели регрессии, алгоритмы деревьев решений, включая случайный лес (Random Forest) и градиентный бустинг (XGBoost), свёрточные нейронные сети (CNN), метод K-средних (K-Means), метод главных компонент (PCA) и др. В рамках доклада был представлен краткий обзор полученных результатов проведенного анализа консолидированного набора данных восточного сектора Российской Арктики с использованием всех перечисленных моделей.
Во второй части доклада были рассмотрены современные технологии компьютерного зрения (Computer Vision) для оптимизации и улучшения качества фотоизображений. Значительная часть геолого-геофизической информации сохранена в виде изображений. Проведение обработки и оптимизации качества данных изображений может быть важным этапом подготовки и консолидации данных для проведения многопараметрического анализа геопространственных данных.
